An illustrated guide to adding data,
managing the database, running analyses,
and more

KINOPEDIA

Official User Manual (v1.0)

Joyce, Alex William

This document will explain how to use and maintain the Kinopedia code base. The current code
can be found on the CDRL’s GitHub page.

Contents:

1. General Data Structure

1-1 Kinopedia Directory 2
1-2 Major Kinopedia Features 3
1-3 S4 Class Structure 3

2. Database Structure

2-1 Kinase Runs 6

2-2 Kinase Data Objects 7

2-3 Database Integration 8

2-4 Adding New Kinase Datasets 9
3. Rshiny Structure

3-1 Modules 12

3-2 Primer on Reactivity 13
4. Specific Module Features

4-1 The Lookup Module 16

4-2 The Comparison Module 18

4-3 The EnrichR Module 20
5. Function Guide

5-1 Normal Functions 23

5-2 Generics 34

1|Page

1. General Data Structure

Kinopedia contains several functionally different sections that constitute the basis of the program.
These sections are:

Database; files related to the kinases contained within the program.

Shiny; components related to the application itself. This includes all of the modules that
facilitate the data analysis.

Functionality; components related to application functions such as heatmaps, plots, and
statistical analyses.

Understanding how these three components interact with one another is paramount to figuring out
how the program itself works. The database is largely separate from the rest of the program,
existing externally and being called when needed. The functionality is closely linked to the Shiny
components, which can be thought of as a ‘scaffold’ in which the functionality is held.

Shiny

A

Functionality Database

1-1 Kinopedia directory

The main directory of Kinopedia contains the following folders:

Classes: script files for S4 class definitions

Data: setup files needed for Kinopedia to run

Experiments: experimental data

Fingerprints: fingerprint data

Functions: script files for Kinopedia functions

Kinases: recombinant kinase data

Modules: scripts related to the modules for the Rshiny component
Rsconnect: used to connect the program to shinyapps.io

Runs: contains data related to each ‘run’ (set of chips run on the machine)

There are also several important files located within the main directory:

.gitignore/.Rhistory: files that can be ignored

app.R: primary file used to launch the Shiny app

kinopedia_app.Rproj: Rproject file- used to modify the program in Rstudio
kinopedia_setup.R: script used by app.R to load all of the essential components from the
data, modules, and function folders.

2|Page

. classes
l data

l experiments

kinopedia_app
E kinopedia_setup

1-2 Major Kinopedia Features

Kinopedia has several different features that can be used to analyze different types of kinase
data. These features include:

Viewing interactive heatmaps through Plotly
Browsing the database
Comparing different datasets
o Generating heatmaps of log fold-change values
o Performing correlation analysis
Pathway analysis

These features will be described in greater detail in the following sections.

1-3 S4 Class Structure

Kinopedia is based around S4 classes, which can be a bit of a confusing concept to understand. As
these classes encapsulate the majority of the data within the Kinopedia database, it is important to
have a basic understanding of how this system works before modifying the database. Put simply,
S4 classes act as a form of extended list that allows a single object to have multiple components.
For instance, the kinase class contains the model, data, concentration, and general information
regarding a specific kinase; this information can then be accessed by ‘methods’, which will be
described shortly.

setClass{"kinase",

slots = c{data = "data.frame',
model = "list",
comp = "list",
groups = “'character’,
ctl = "character",
threshold = "numeric',
GC = "character",
diff = "data.frame",
concs = "data.frame",
signal_thresh = “numeric",
rseq_thresh = “numeric™
¥,

3|Page

When new data is added, the build_kinase() function constructs a new kinase object by filling the
necessary slots. Due to differences in data, there are two instances of this function:
build_kinase_conc() and build_kianse_rep(); despite this, they both work the same.

build_kinase_conc <- functiom(data, model, concs){ build kinase_rep <- function(data, model, concs){
data <- data.frame(data) data <- data._frame(data)
kin <- new("kinase", kin <- new(“kinase”,
data = data, data = data,

model = model,
CONCS = CONCS,
comp = list{comp1 = c("Replicate_1", "CTL"},

model = model,
CONCS = CONCS,

comp = list{comp1 = C("Higt'"- "CTL™), comp2 = c(“Replicate_2", "CTL"},
comp2 = c("Hedium", “CTL"}, comp3 = c(“Replicate_s", “CTL")),
compd = c{"Low", "CTL"}), groups = c{"Replicate_ 1", "Replicate_2", "Replicate_3"},
groups = c(“High", "Hedium”, “Low"}, ckl = "CTL"™,
ctl = "CTL", threshold = 8.1,
threshold = 0.1, GE = c("Replicate_1", "CTL"),
GC = c(“High", "CcTL™), signal_thresh = 8,

signal_thresh = @, rseq_thresh = @

rseq thresh = @
kin ’ !
¥

Understanding how this translates into the main code is a bit more complicated. Knowing that
these classes act as lists, it is possible to access these components through the ‘@’ notation. For
example, if a function requires a model as an argument, the notation ‘kinase@model’ can be used.
To further simplify this, we can use generics and methods. In the ‘classes’ folder, there is a script

called ‘generics.R’. Opening it, we can see generics such as:

setGeneric("1fc_table",
functionm{x) standardGeneric({"1lfc_table"},

signature = "x

)

This generic is for generating the LFC tables used in many of Kinopedia’s functions. Moving back
to the kinase_class.R file, something similar can be seen further down in the script:

setMethod{"1fc_table", "kinase", functiomn{x){
export_dataimodel = xEmodel,
data = xi@data,
threshold = =iEthreshold,
groups = xEGE,
5ig_thresh = xB@signal_ thresh,
rseq_thresh = x@rseq_thresh)

1)

This is the corresponding method for the Ifc_table() generic. Within this method, we can see a
function called ‘export_data()’ which is the function that actually generates the table. Although
this appears complex on the surface, it is rather simple in practice. The final piece of this puzzle is
to see how this code is implemented in the program itself. The screenshot below shows an instance
of Ifc_table() within the recombinant module:

diffDF <— reactivef(d{
1Fc_tah19{run$u59r1nput}
*)

Here, ‘runSuserlnput’ is a kinase-class object (think ‘ABL2’; the reason for this is due to reactive
programing within Rshiny, which is described later). In essence, Ifc_table() is a function that can

4|Page

accept any of the three data types and generate a table of log fold-change values from them. It
does this by recognizing the argument as a kinase-class object, then calls the appropriate method
(method dispatch). The job of the method is to look at the slots contained within the kinase class
then translate these slots to arguments used by the ‘export data()’ function. This is summarized
in the following chart:

code
L J
lic_table()
{generic)
L 4
kinase fingerprint experiment
h 4 L 4 h 4
method method method
Y Y 4
export_data() export_data() export_data()
(function) {function) (function)
L 2

fable output e—— —

5|Page

2. Database Structure

The database is at the heart of Kinopedia; it contains all of the built-in data related to protein
kinases. In order to facilitate a streamlined experience, the Kinopedia database has a specific
format that must be followed. Roughly, the database can be divided into two sections: the ‘run’
section, which contains all of the instructions necessary to generate new files, and the ‘data’
section, which holds the actual kinase data.

Based on the S4 structure of Kinopedia, each protein kinase (recombinant, experimental, or
fingerprint) can be thought of as an ‘object’. Programmatically, this was described as being akin
to a type of list, however, in terms of physical storage, we can think of each kinase as a folder
(directory) of several files. Over the next two sections, this schema will be described in greater
detail using recombinant data as an example.

2-1 Kinase Runs

The raw data for the kinome array is normally found in the context of a run. A run is a collection
of three or more chips identified by a unique barcode. Because each run can contain multiple
different kinases, it is important that pre-processing steps are put into place to separate each
unique kinase in the run.

Information on each run is contained with the ‘runs’ folder in the main directory.

Mame

. runl
l run2
l run3

. rund
. run3
. runf
. run?

0
l rund 0 P File folder

Within each of these numbered folders is a set of several files:

e Info: .txt file that lists all of the kinases and their associated barcodes

e Setup: R script that provides the code responsible for making the files

e SigmBg/SigSat: KRSA files that contain the actual run data

e Sample Annotation: additional metadata used in the preprocessing workflow.

MName - Date modified

I 640071310_640071311_640071312 86402 5... 3/22/20 3 PM ext Document 3 KB
. info W Text Document 1KE

E runl_setup 0 W R File 4KB
. SigmBg 0 W Text Document 601 KB
. SigSat 021 7:37 PM ext Document 469 KB

Most of the Setup.R script file is taken from the KRSA .Rmd template and can be run as-is,
however, there is an important caveat to consider. To streamline the process of loading new data,

6|Page

a standardized naming system was implemented. This involves the use of the ‘name eval()’
function which replaces the sample names with ‘High, Medium, Low, and CTL’ for concentration
series or ‘Repl, Rep2, Rep3, and CTL’ for replicates. Because not every set of data contains the
same sample order, it is important to make sure that the ‘vec’ argument in the script file is correct.
Sample order can be identified from the sample_annotation.txt file as shown below:

‘Earcode Row Col Array Visual QC Pl PamGelOperator Project Article nu Strip ATP Detection Sample n: Sample ty Sample b Sample cc

640071310 1 1A1 OK DRy MMo 130-073 86402 1 400 PY20-Fitc; Abl2 kinas Kinase lot 012 1.675
640071310 2 1A2 OK DRy MMo 130-073 86402 1 400 PY20-Fitc; Abl2 kinas Kinase lot 012 5
640071310 3 1A3 OK DRy MMo 190-073 86402 1 400 PY20-Fitc; Abl2 kinas Kinase lot 012 1.675
640071310 4 1A4 OK DRy MMo 190-073 86402 1 400 PY20-Fitc; Abl2 kinas Kinase lot 012 0.55
640071311 1 1A1 OK DPy MMo 190-073 86402 2 400 PY20-Fitg; BLK kinas Kinase lot 001 1.675
640071311 2 1A2 OK DPy MMo 190-073 86402 2 400 PY20-Fitc; BLK kinase Kinase lot 001 5
640071311 3 1A3 OK DPy MMo 130-073 86402 2 400 PY20-Fitc; BLK kinas¢ Kinase lot 001 1.675
640071311 4 1A4 OK DPy MMo 1390-073 86402 2 400 PY20-Fitc; BLK kinas Kinase lot 001 0.33
640071312 1 1A1 OK DPy MMo 130-073 86402 3 400 PY20-Fitc; HCK kinas Kinase lot 001 1.675
640071312 2 1A2 OK DPy MMo 190-073 86402 £ 400 PY20-Fitc; HCK kinas Kinase lot 001 5
640071312 3 1A3 OK DPy MMo 190-073 86402 £ 400 PY20-Fitc; HCK kinas Kinase lot 001 1.675
640071312 4 1A4 OK DRy MMo 130-073 86402 3 400 PY20-Fitc; HCK kinas Kinase lot 001 0.55

What the name_eval() function does is it looks at each value of the array column (Al through A4)
and replaces the sample name that corresponds to that array with the value of the matching number
in ‘vec’. Essentially, if the control sample in the experiment is located at array Al, the first item
in ‘vec’ should be ‘CTL’.

The rest of the setup.R script is straightforward; its main purpose is to generate the model, data,
and conc (concentration) files, which are all the primary components of the kinase data objects
discussed in the next section.

2-2 Kinase Data Objects

Processed kinase data is contained within several different directories depending on the type of
data. In the case of recombinant kinase data, the data is contained within the ‘kinase’ directory.

File folder
File folder
File folder

File folder
File folder
File folder

In this directory, we can see several named folders. Each of these folders contains various files
that comprise the kinase object itself.

R File

Fa P

CCCCCC
Pa P ba o

Fd P

ABL

map

In the ABL2 folder, for example, two distinct sets of concentration, data, and model files can be
seen along with a map.csv file. The reason that there are two sets of data for the same kinase is the

7|Page

fact that there were two runs performed on the same kinase set (ABL2, BLK, and HCK) under
different conditions. The first run consisted of variable amounts of protein within each well
(concentration series) while the second run used the same amount of protein (replicate series).
Different runs of the same kinase are distinguished by affixing the last three digits of the barcode
to the kinase’s name and specifying the component, i.e, ‘ABL2 310 model.Rds’.

Examining the ABL2.R file shows how these components are brought together to create the
finalized kinase object. Understanding how the data is assembled within Kinopedia is crucial to
understanding how the shiny and functional components of the app operate as well as to update
and maintain the database.

#BL2_318

ABL2_data_318 <- readRDS({"./kinases/ABL2/ABL2_310 data.Rds™)

ABLZ_model_318 <- readRDS("./kinases/ABL2/ABLZ_316_model.Rds")

ABL2_conc_318 <- readRDS({"./kinases/ABL2/ABL2_318_concs.Rds™)

ABL?_ 318 <— build kinase conc{data = ABL2 data_ 318, model = ABLZ? model 318, conc = ABL2 conc_318)
#ABL2_317

ABL2_data_317 <- readRDS({"./kinases/ABL2/ABLZ_317_data.Rds")

ABL2_model 317 <- readRDS("./kinases/ABL2/ABL2_317_model .Rds")

ABLZ_conc_317 <- readRDS("./kinases/ABL2/ABL2_317_concs.Rds™)

ABL2_317 <- build_kinase_rep({data = ABLZ2_data_317. model = ABL2_model_317, conc = ABL2_conc_317)

ABLZ_runs <- List({"ABLZ Concentration" = ABLZ_314,
“ABLZ Replicate" = ABL2_317)

Here, it can be seen that two separate kinase data objects are being built from the constructors
‘build_kinase rep()’ and ‘build kinase conc()’. These objects are then placed into a list which
can be accessed by the program itself.

ABL? runs <- 1list{"ABL2 Concentration" = ABL2_ 314,
"ABL2 Replicate' = ABL2_317)

2-3 Database Integration

The way that Kinopedia reads the kinase data is rather straightforward. Most of the information
regarding how the data is loaded into Kinopedia is contained within the ‘data’ directory.

E' experiment_data ' 37 PM R File
E fingerprint_data Fat \ R File
E' kinase_data 5 R File
. kinome_data.Rds 2022 9: RDS File
E’ kinopedia_functions

. kinopedia_PTK_map.Rds

I kinopedia_STK_map.Rds

\SA_ptk_map.Rds
I stk_map.Rds
. ptk_hgnc_map.Rds
. ptk_id_map.Rds
I stk_hgnc_map.Rds
I stk_id_map.Rds

Inside this directory are several script (.R) and data (.Rds) files. The script file ‘kinase data.R’
contains several paths to the scripts from the ‘kinase’ directory.

8|Page

HABLZ
source(".fkinases/ABL2 /ABL2 R™)

HAKTA
source("./kinases/AKT1/AKT1 . R™)

HAKTZ
source(”.fkinases/AKT2/AKT2 .R™)

HAKT3I
source("./kinases/AKT3/AKTZ R™)

At the bottom of this script are three lists. The first two contain all of the concentration series or
replicate series in separate lists while the third contains all of the data; it should be noted that
kinases in the third list are specified whether or not they are from a concentration or a replicate
series.

rep_runs {- List(kinase_master_list <- list(

conc_runs <— list
- ("ABL2"™ = ABLZ2_317, "ANTK Concentration™ = AATK,

"AATK™ = ARTK,

- o “BLE"™ = BLK 321 “ABLZ Concentration” = ABL2_318,
ABL2 —_I’IBL2_31B, " w o oz * “ABLZ Replicate” = ABLZ_317,
#UAKT1 First Run™ = AKT1 414, CAMK1™ = CAMK1_628, H"AKT1 Concentration 1% = AKT1 414,
#"'AKT1 Second Run' = AKT1 518, "CAMKZA" = CAMK2A_621, #"AKT1 Concentration 2" = AKT1_510,
" T - " 0o "AKT1 Concentration" = AKT1,
._HH.H N AKT1, . CAMK2B" = BHMI{23_?BQ, "AKT? Concentration 1" = AKT2_221,
AKTZ First Run™ = AKT2_221, #"CAMKY" = CAMK4 718, “AKT? Concentration 2 = AKT2_415,
"AKT2 Second Run™ = AKT2_415%, "CSK" = CSK 511, “AKT2 Concentration 3" = AKT2_589,
"AKT2 Third Run' = AKTZ2 589, . o — "AKT2 Concentration 1" = AKT2_416,
“AKT2 First Run™ = FIKT3_1116 DDR2 - DDH2_?23! "AKT3 Concentration 2" = AKT3_588,
“AKT3 Second Run" = HI{TE 536 “"DHPK" = DMPH_SBS, "AURKA Concentration” = AURKA,

- E] “DYRK1B" = D'I'RH1B_5“9, BLKE Concentration™ = BLK_311,

“BLE Replicate” = BLK_321,

More information on how these lists translate into interactive functionality can be found in section
3.

2-4 Adding New Kinase Datasets

To add new recombinant kinase data to Kinopedia, first find the ‘run’ folder within the main
directory (section 2a). To add a new run, simply copy one of the subfolders within the ‘run’
directory and rename it. Once this is complete, rename the ‘run # setup.R’ script within the new
folder and delete the signal minus background and signal saturation files, these will need to be
replaced with the new KRSA files from the run you are adding. After adding the new files, the
script is ready to edit.

The first section of each ‘setup.R’ script involves the use of the ‘name_eval()’ function; this
function replaces the sample names with ‘High, Medium, Low, and CTL’ for concentration series
or ‘Repl, Rep2, Rep3, and CTL’ for replicates. Because not every set of data contains the same
sample order, it is important to make sure that the ‘vec’ argument in the script file is correct. To
check this, right click the sample annotation file that came with the kinase run and open it using
Microsoft Excel.

After this, the rest of the script is relatively straightforward to edit. Following the template, the
barcodes should be changed to match that of the run being added. The purpose of this section is to
generate separate files for each of the kinases on the chip. After this, the names of the files being
created should be changed to that of the kinase in question. Finally, change the values of the

9|Page

concentration vectors located towards the bottom of each section of the script. After doing all of
this, copy the entire script and place it in the R terminal; it should automatically execute and
generate the files.

Adding the data to Kinopedia is largely the same as generating the new files. From the main
directory, located the ‘kinases’ folder and open it. Inside are subfolders named after different
kinases. If the kinase being added is not already present, add a new folder; it if is present, locate
the existing kinase folder. From the ‘run’ folder in the last step, move the model, data, and
concentration files into the new kinase folder. In the terminal, create a new script file and save it
as [kinase_name].R to the kinase folder. Use the example shown in chapter 2b to fill out the script.
If there are multiple sets of data for each kinase, the template should be copied and adjusted as
necessary; all the datasets for each kinase should be located on the same script file.

After the new script has been created, head back to the main directory and locate the data folder.
There are several scripts here, the most important being kinase_data.R. Open this file and add the
path to the new kinase’s script file.

This adds the kinase object to the program, however, there are additional steps that must be taken.
Several parts of Kinopedia rely on ‘master lists’, that are, lists that contain every dataset currently
in the database. There are several of these master lists, and each one must be updated separately.
In the case of recombinant kinases, there is another list that must be updated first; which list is
updated depends on the run being uploaded- if the concentration of protein varies in each well
(high, med, low), then the ‘conc runs’ list is updated; if the concentration does not vary between
wells, then the ‘rep runs’ list is updated.

In either case, both types of data are added to the master list, with the type (concentration or
replicate) being specified.

Once the kinase master list has been updated, the kinase is now registered in the database. A
summary of this process is outlined in the following chart:

data
N - .| addnew KRSA add the kinase object
create new run folder — (sigmBg/SigSat) files to the master lists

create and run a new

'setup R’ file (copy an note the sample order
existing file from a relative to the array

previous run)

add the path to the
kianse.R file in the
kinasze_data R file

A

Y

add new model, data, create a new
and concentration kinase R file following
files the described format

create a new kinase
folder

Y

Y

INases

10|Page

Although this tutorial was written with recombinant datasets in mind, a similar process can be
conducted for both fingerprint and experimental datasets. These datasets require more manual
modifications due to the non-standard naming and grouping conventions.

11|Page

3. Rshiny Structure

The main program of Kinopedia is coded to work within the Rshiny framework. This is done
through a system known as reactive programming which allows variables to be updated in real
time. A detailed guide to Rshiny can be found at https://mastering-shiny.org/, however, this section
will briefly go over how this system is integrated into Kinopedia.

3-1 Modules

Modules are the highest level of organization when it comes to Kinopedia. Modules encapsulate a
majority of the functions such as viewing heatmaps, running correlation analyses, and conducting
pathway analyses. Scripts for each module are contained in the ‘modules’ folder while the script
that loads each module is found in the ‘data’ folder. Each module consists of a Ul and a server
component. This is the core of Rshiny, with the Ul determining how the app appears and what the
user can interact with and the server determining what outputs are generated. The diagram below
shows how the hierarchy of modules is arranged in Kinopedia.

l Jvi app i
home recombinant L comparison lookup
module module module module
l experiment
module un
fingerprint select
module | enrichR
analysis module l
- . v
analysis overniew kinase enrich enrich
prediction peptides kinases

Each of the primary modules connects to app.R; additionally, several of these modules contains
one or more sub-modules (i.c., the fingerprint module has both ‘fingerprint overview.R’ and
‘fingerprint_analysis.R’ associated with it). The purpose of this structure is to reduce code
complexity. For instance, the entirety of the fingerprint module is rather condensed:

fingertl <- function{id, runs, name}{
tabPanel(
name,
tabsetPanel(
fingerOverviewdI{HS(id, "cell over"), FURS = runs},
fingerfAnalysisUI{NHS{id, “cell_analyze™}, runs = runs}
)
)
H

fingerServer <- function{id, runs, map){
moduleServer(id, function{input, output, session){
fingeroverviewServer{cell over', runs = runs, map = map)
fingerfAnalysisServer{cell_analyze', runs, map = map)
¥
H

12| Page

https://mastering-shiny.org/

With the functional portion of the code being sequestered into sub-modules:

fingerOverviewServer <- Functiom{id, runs, map){

When we run the app, we can better understand the practical use of this complex setup. The
primary modules appear from a top feature bar while each of the sub-modules are accessible from
tabs contained within each primary module. This reflects the structure outlined in figure 3.

moduleServer(id, Functiom{input, output, session}{

run <- reactiveUalues{userInput = HULL}

runChoice <- reactive({
runs[[inputirun_choice]]

¥

observeEvent{runChoice{},{
run$u59r1nput <— runChoice()

b

signal <- reactive({
input$sig_set

n

fingerdverviewServer <- function{id, runs, map}{
moduleServer{id, functiom{input, output, session}){
run - reactivelalues{userInput = HULL}
runChoice €— reactive({
runs[[input$run_choice]]
¥}
observeEvent{runChoice(},{
run$userlnput <- runChoice({)
¥
signal <- reactive({
inputisig set
¥)

3-2 Primer on Reactivity

In the process of adding new data, a step where the kinase object is added to one of two lists
(replicate or concentration) was mentioned. The purpose of this is to allow the user to easily

select a kinase from the drop-down menu.

13| Page

Select a run

ABL2 -

Select a group to compare

High -

Once selected, the kinase’s details such as groups, concentration, and thresholds populate the rest
of the interactive elements on the page. This is where the S4 classes come into play as all of these
details can be packaged into a single object then passed to a list without creating a complex set of
nested lists.

The code segment below is a section of the recombinant module Ul. This specific segment is for
the two drop-down menu boxes seen to the right. It should be noted that ‘runs’ refers to the list of
kinases in the database (the replicate or concentration lists) from which the user can select a
specific kinase.

selectInput{NS{id, "run_choice"),
“Select a run",
choices = names(runs),
selected = "ABL2™),
selectInput{NS{id, "group_choice"),
"3elect a group to compare",
choices = HULL,
¥,

On its own, the UI doesn’t do anything. The server, shown below, is where the bulk of the
functionality comes into play. Although this section of code appears rather complex, it is actually
simple in execution.

run <- reactiveUalues{userInput = HULL)}
runChoice <- reactive({
runs[[input$run_choice]]
¥
observeEvent {(runChoice(),{
runjuserInput <- runChoice()
choices <- run$userInputEgroups
updateSelectInput{inputId = "group choice",
choices choices)

18]

14| Page

The first thing that is set up is a reactiveVValues object. This object acts as a ‘container’ in which
we can set various values; the execution of this is analogous to a list. Here, we are adding an
element called ‘userInput’ to store the kinase selected by the user. The ‘reactive()’ function creates
a check that monitors any change to the specified input; in this case, the input is ‘run_choice’,
which is the drop-down box containing kinases as seen in the Ul. Upon detecting a change,
reactive() crates a temporary reactive variable called runChoice(). At first glance, this may seem
redundant, as it would make more sense to directly place the selected kinase in the container.
Unfortunately, reactive() is difficult to directly tie to reactiveValues. We can mitigate this through
the use of observers that detect changes to reactive objects. When runChoice() is changed, an
observer then places that kinase in the container which crates ‘run$userInput’, which is the kinase
class object itself.

The final part of this code segment extracts the group names from the kinase object and sets those
to the possible choices for the group select box. This pattern is repeated for most of the Kinopedia
modules, therefore, understanding how this system works is paramount to understanding how most
of the Kinopedia code works.

15| Page

4. Specific Module Features

So far, we have explored both the database and the Rshiny components of Kinopedia, however,
there is a third major component of Kinopedia- specific functionality of each module. This
functionality includes figure generation, table generation, and any other components that are not
controlled by Rshiny, S4 classes, or the main database.

4-1. The Lookup Module

The lookup module is used to browse information regarding the kinases in the database, however,
it does not interact with the database itself. The initial view of this module is seen below:

Enter a peptide(s) seperated by spaces

Enter a kinase(s) seperated by spaces

Enter a list of peptides to get gene symbols

Enter a recombinant kinase to compare to
KRSA mapping

Enter a family(s) seperated by spaces

show 25 v entries Search

hgne_id hgne_symbol = hgne_name = group family subfamily ~ krsa_id uka_id
No data available in table

hgnc_id hgnc_symbol | |hgnc_name | [group family subfamily | |krsa_id uka_id

When text is entered into one of the boxes, a table is returned. For instance, entering ‘AKT1’
returns a list of all peptides mapped to AKT1 based on the Kinopedia mapping file.

Entar 3 paptide(s) separated by spaces
Enter a kinase(s) seperated by spaces
Enter a list of peptides to get gene symbols

Enter a recombinant kinase to compare lo
KRSA mapping

Enter a family(s) separated by spaces

Peptide Kinase

NMDZ1_890_502 AKT1

Previously, when the ‘data’ directory was explored in chapter 2, the .Rds files were ignored,
however, they are integral to the lookup module. These files consist of tables that are read directly
by Kinopedia through the ‘kinopedia_setup.R’ file. A breakdown of these files and the data that
they contain is as follows:

e kinome_data: file from Creedenzymatic, contains KRSA-UKA connections, families, and
HNGC symbols for the entire Kinome.

16| Page

Kinopedia_ PTK_map: assigns peptides to recombinant PTKs based on the Kinopedia
database.

Kinopedia_STK_map: assigns peptides to recombinant STKs based on the Kinopedia
database

KRSA_ ptk_map: assigns peptides to PTKs based on in-silico assignments; derived from
the KRSA package.

KRSA _stk_map: assigns peptides to STKs based on in-silico assignments; derived from
the KRSA package.

ptk_hgnc_map: connects PTK hgnc symbols to their corresponding UniProt IDs.
ptk_id_map: connects PTK peptide names to their corresponding UniProt IDs.
stk_hgnc_map: connects STK hgnc symbols to their corresponding UniProt IDs.
stk_id_map: connects STK peptide names to their corresponding UniProt IDs.

Returning to the Kinopedia mapping files, we can get a better understanding as to why this
component is independent from the database despite being a way to obtain database information.
The reason for this is that the mapping files are manually curated; this means that peptide
assignments are manually determined by the user (see chapter 5 more information on determining
peptide assignments). Due to this, it is important to update the mapping files each time changes
occur in the database. These files can be updated by loading them into the R console through the
read.Rds() function and appending new data to them; once complete, the updated mapping file
can be generated through the save.Rds() function.

Programmatically, the lookup module works off of a series of functions that subset an entry table
(from the .Rds files) based on a set of user-entered words. Each of these subset tables is saved as
a reactive object.

peps_table < reactive({
vec_pep = input$pep_in
nab_peps{map = map, vec = vec_pep)
¥
kin_table {- reactive({
vec_kin = input$kin_in
nab_kins{map = map, vec = vec_kin}
1)
hgnc_table < reactive({
vec_symbol = input$pep_hgnc
nab_symbols{ids = ids, hgnc = hgnc, vec = vec_symbol)
1)
family_ table <- reactive({
vec_family = input$family_in
family check{kinome = kinome, vec = vec_family)
1)

In order to make the module’s UI efficient, a single table output is created. This output is tied to
the container ‘request$table’. When an input is detected in one of the boxes, the corresponding
reactive table is placed into this container.

17 |Page

request <- reactivelUalues(table = HULL}

observeEvent{inputipep_in.{
requestitable <- peps_table()

H3)

peps <{- reactive{{
kin_table()iPeptide

Hy)

observeFvent{inputikin_in,{
requestitable <- kin_table{)

Hy)

kins <- reactive{{
peps_table()$Kinase

1)

4-2 The Comparison Module

The comparison module is used to directly compare different data sets. Comparisons are done
through the LFC values from specific groups within the datasets. This is as rather complicated
module with several different options.

Recombinant Fingerprint Experiment

Select a Run

Select a group to compare

Recombinant Fingerprint Experiment

Select a Run

Select a group to compare

Enter peptide(s) seperated by spaces

Combine Data

On the initial view, there are two identical selection fields. The buttons on the top are used to
toggle between different types of data. Clicking on one of the buttons populates the other fields
from which a run and group can be selected.

Recombinant Fingerprint Experiment

Select a Run

AATK Concentration v

Select a group to compare

High -

18| Page

The text entry field towards the bottom is used to input the peptides whose LFC values will be
used for the comparison. The following table can be used to better understand how this process

works:

AKT1 Female
Recombinant AD
Data Data
v v
Recombinant User-Defined Experimental
LFC Table Peptide List LFC Table
v v
Subset] Subset
Recombinant —————» D‘F’,ee”’?izz':g «——{ Experimental LFC
LFC Table x Table

—® LFC Heatmap
Similarity
Report
LFC Matrix

LFC Correlation

Analysis

Essentially, an LFC table is generated for each of the selected datasets. Each of these tables is then
subset using the list of user-entered peptides. Peptides from this subset that are found in both
datasets are then used to construct a matrix from which further analyses can be conducted.

In order to better understand how this process works, we can explore the code. At the start of the
code, we can see a sub-module distributed across both the Ul and Server.

df1 {— selectServer(
“select_1",
list1, 1list?, list3
3
df?2 <{- selectServer(

“"Compare from Database', "select_2",
selectUI{HS{id, "select_1")}, list1, list2, list3
selectUI{HS{id, "select_2")},) « tive({
tEXtIHPUt(NS(id’ "texi_:_in") * pegls‘unch:5é('§n;:§$text_in)
"Enter peptide{s) seperated by spaces"), 3y
actionButton({NS{id, "trigger_blend"}, out <- eventReactive(input$trigger_blend,{

blend({df1 = df1(),
df2 = df2(),
groupl = "dataset_1",
group2 = "dataset_2",
peps = peps(})

"Combine Data™)},

H]

The selection submodule is responsible for generating both of the LFC tables. This module works
similarly to the other modules (recombinant, fingerprint, and experimental viewers). Of note is the
presence of ‘list” arguments in the function definition of the server:

19| Page

selectServer <— functiom{id, 1list1, 1list2?, 1list3){
moduleServer{id, Function{input, output, session}{
dataType <- reactivelUalues{select = HULL}
run <- reactiveUalues{userInput = HULL}
run <— reactivelalues{control = HULL)
observeEvent{input$select recomb,{
dataTypeiselect <- list1
choices1 <— names{list1)
updateSelectInput{inputId
choices

"run_choice",
choices1)

¥}

These list arguments are the previously discussed ‘master lists’ that contain all of the data within
the database. It should be noted that arguments utilized by sub-modules are also defined within the
signature of the main function. These arguments are set in the ‘app.R’ file where the app as a whole
IS constructed:

compbatabaseServer("CE"™, list1 = kinase master list,
list? = fingerprint_master list,
list3 = experiment_master list)

The remainder of the module consists of standard table/plot inputs and outputs. Descriptions of
each of the functions within the rest of this module can be found in chapter 5.

4-3 The EnrichR Module

The EnrichR module is used to conduct pathway analysis; the actual pathway analysis is done
through an R package written by Wajid Jawaid; documentation for this package can be found here:
https://cran.r-project.org/web/packages/enrichR/vignettes/enrichR.html

The enrichR r package contains several databases that can be queried; currently, Kinopedia is set
up to utilize eight unique databases. Additional databases can be added to Kinopedia by finding
the ‘dbs’ object in the file ‘kinopedia setup.R’.

Functionally, the enrichR module operates in the same manner as the lookup module. The main
page contains tabs for different categories of data, a dropdown menu for selecting a database, and
several options to view a table, a plot, and downloading the table.

STK PTK Kinase
Select a Database

GO_Biological_Process_2018 v

Enter Peptide(s) Seperated by Spaces

Show Pathway Table Show Pathway Plot & Download Pathway Table

20|Page

https://cran.r-project.org/web/packages/enrichR/vignettes/enrichR.html

The actual code itself is relatively straightforward. Each of the three tabs is controlled by its own
separate sub-module that loads each of the required arguments from the setup file.

enrichUI < function{id}{
tabPanel{
“EnrichR",
tabsetPanel(
enrichPepUI{NS(id, “enrich_stk™), name = "STK", dbs = dbs),
enrichPepUI{NS(id, “enrich_ptk™”), name = "PTK", dbs = dbs),
enrichKinUI{HNS(id, "enrich_kinase"), dbs = dbs}
}
}
H

enrichServer <- function(id, id_stk, id_ptk, hgnc_stk, hgnc_ptk, dbs}{
moduleServer (id, function{input, output, session}{
enrichPepServer(“enrich_stk",
pep_map = id_stk.
hgnc_map = hgnc_stk,
dbs = dbs)
enrichPepServer(“enrich_ptk",
pep_map = id_ptk,
hgnc_map = hgnc_ptk,
dbs = dbs}
enrichKinServer("enrich_kinase™,
dbs = dbs}
¥
H

Looking at the ‘pep_enrich.R’ file, it can be seen that the sub-modules are a bit more complex,
however, it can be easily broken down. Most of the Ul consists entirely of components related to
displaying the enrichR results with a text-input and database selector field.

enrichPepUl <- Function{id, name, dbs}{
tabPanel(
name ,
selectInput{H3({id, “database_select™},
“Select a Database™,
choices = dbs,
selected = dbs[3]

),
textInput{H5{id, "text_in"},
"Enter Peptide(s) Seperated by Spaces"),

actionButton{HS{id, "show table"},

“Show Pathway Table™},
actionButton{Hs(id, "show _plot™},

"Show Pathway Plot™),
downloadButton{NS{id, "douwnload),

"Download Pathway Table™),
dataTableOutput{NS{id, "enrichi1™}),
plotOutput(HS{id, "enrich2"})
]
H

Although the server appears to be complicated on the surface, a majority of it follows previously
established patterns of reactivity. Enrichr itself only accepts HNGC symbols; the portion of the
code that assigns these symbols to peptides works exactly the same as it does for the lookup
module. The key difference is the inclusion of the enrichrR portion; most of this is controlled by
the enrichr function itself which comes from the enrichr package. The ‘plotEnrich() function
converts the initial table results to a plot; both the table and plot forms of the results are stored in
the ‘results’ container.

21| Page

enriched <- reactive({
enrichr(genes = data$hgnc, databases = data_choice())
]
data <- reactivelValues(enriched = MULL}
observeEvent{enriched(},{
datadenriched <- enriched{)[[1]]
¥
enriched_plot <{- reactive({
plotEnrich{data%enriched,
showTerms = 28,
numChar = 48,
Yy = "count",
orderBy = "P.value™)
¥
results <- reactiveValues{table = HULL)
results <- reactiveValues({plot = HULL}
uhserueEuent(input$shuw_tahle,{
resultsitable <- enriched{)[[1]]
resultsiplot = HULL
¥

Something to note is the inclusion of a download function; this function is to download the table
to a .csv file, however, there are multiple issues with this function that need to be resolved in the
future. First, the filetype must be specified by manually adding ‘.csv’ to the filename. Second, the
file will only download when the table is being displayed; the reason for this is that the download
handler is drawing from the ‘data’ container. If the plot is being displayed then the container is
filled with the plot which cannot be downloaded.

22| Page

5. Function Guide

The remainder of this handbook will be dedicated to explaining the many functions that can be
found within the functions directory of the app; the main purpose of including this section is to
provide better clarity for future package development. In this section, there are a few function

types:

Structural: used for rendering Rshiny Ul elements

Wrapper: used to several different functions into a single function; normally outputs a list
object of several outputs

Constructor: builds a new S4 object of a defined class

Utility: automates a simple task such as counting items in a list

Complex: functions that either perform complicated operations or contain many different
components

Other: functions that do not fit the other four categories

Generic: functions that serve as generics for S4 classes

5-1 Normal Functions

blend:

Generates a combined table of two independent LFC tables, a peptide distribution report,
and a heatmap of LFC values.

Type: complex

Inputs: df1 (first LFC table), df2 (second LFC table), groupl (name of first group),
group2 (name of second group), peps (list of peptides of interest)

Outputs: out (list object containing the combined dataframe, the distribution dataframe,
and a heatmap)

Children: blender_heatmap, blender_matrix

blender_heatmap:

Creates a heatmap using a matrix of LFC values

Type: other

Inputs: data (matrix object), ... (additional arguments compatible with R heatmaps)
Outputs: heatmap

Parent: blend

blender_matrix:

Creates a matrix of LFC values

Type: other

Inputs: data (combined dataframe of the two LFC tables of interest), peptides (list of
peptides of interest)

Outputs: a matrix of LFC values

23| Page

Parent: blend

build_kinase_conc:

Creates a new kinase object for a concentration series

Type: constructor

Inputs: data (data.Rds file), model (model.Rds file), concs (concs.Rds file)
Outputs: a kinase object

build_kinase_rep:

Creates a new kinase object for a replicate series

Type: constructor

Inputs: data (data.Rds file), model (model.Rds file), concs (concs.Rds file)
Outputs: a kinase object

cor_pearson?:

Runs a correlation analysis between two LFC dataframes

Type: other

Inputs: y1 (first group), y2 (second group), ylabl (name of first group), ylab2 (name of
second group), method (type of test to use)

Outputs: a list containing two quality reports and a complex results object used in further
functions

Parent:

cor_plot_maker:

Generates a correlation scatterplot and two quality report scatterplots

Type: wrapper

Inputs: df (combined LFC dataframe), method (type of test to use)

Outputs: a list containing the scatterplot and two quality plots in the form of ggplot
objects

Children: cor_scatter

cor_plot_rodeo:

Set of radio buttons used to toggle between plot displays, specifically, those produced by
cor_plot_maker

Type: structural

Inputs: id (id used in Rshiny)

Outputs: N/A

cor_scatter:

Generates a scatterplot of a correlation between two LFC dataframes
Type: other

24| Page

- Inputs: df (combined dataframe), x (data column for the x-axis), y (data column for the y-
axis), xlab (label of the x-axis), ylab (label for the y-axis), method (type of correlation
test)

- Outputs: plot (ggplot object)

- Parent: cor_plot_maker

COV_preprocess?:

- Counts the number of kinases that map to a set of given peptides

- Type: complex

- Inputs: map (mapping table to use), peps (list of peptides of interest)
- Outputs: perc_df (dataframe of the counts)

- Parent:

- Children: get_counts, generate_perc_df

cruncher:

- Splits a single string into a vector of multiple strings based on spaces (““)
- Type: utility

- Inputs: string (single string)

- Outputs: string (vector of strings)

- Parents: family_check,

diff_df extend:

- Produces a set of data transformed tables from a given table

- Type: wrapper

- Inputs: df (a dataframe of LFC values)

- Outputs: out (a list containing the original dataframe, a z-normalized version, and a log
transformed version)

- Children: zed_transformer, log_transformer

export_data®:

- Filters data and creates a table of LFC values

- Type: complex

- Inputs: groups (groups to compare), data (data object derived from data.Rds), model
(linear model derived from model.Rds), sig_thresh (signal cutoff), rseq_thresh (r-square
cutoff)

- Outputs: diff_df_fil (filtered LFC table)

- Children: mega_filter_grouped, get LFC

family_check:

- Looks for what type of family a particular kinase comes from

- Type: utility

- Inputs: kinome (kinome file from Creedenzymatic, vec (user-derived list of kinases)
- Outputs: df (report of kinase families)

25| Page

- Children: cruncher
generate_perc_df?:

- Generates a table of percent coverage for a set of kinases

- Type: other

- Inputs: kinases (list of kinases of interest), counts_sub (number of peptides of interest
mapped to those kinases), counts_all (number of all peptides mapped to those kinases)

- Outputs: df (percent coverage report)

- Parent: cov_preprocess

generate_plot_df?:

- Generates the dataframe used to construct the coverage plot

- Type: other

- Inputs: kinases (list of kinases of interest), data (table containing the percent coverage
report)

- Outputs: data (table that contains information relating to subset counts and total counts;
used to construct a stacked barplot)

- Children: generate_sub_df, generate_total_df

- Parents: swoosh_plot

generate_sub_df?:

- Generates the top part of the plot dataframe for the coverage section containing the
peptides of interest

- Type: other

- Inputs: kinases (list of kinases of interest), percent (percent of the subset covered), ratio
(ratio of the subset to the total)

- Outputs: df2 (subset coverage dataframe)

- Parent: generate_plot_df

generate_total_df?:

- Generates the bottom part of the plot dataframe for the coverage section containing the
total number of peptides each kinase is mapped to

- Type: other

- Inputs: kinases (list of kinases of interest), percent (percent of the total not covered by the
subset)

- Outputs: df (total coverage dataframe)

- Parent: generate_plot_df

get_counts:

- Counts the number of peptides mapped to each kinase in a list of kinases

- Type: utility

- Inputs: df (dataframe containing the kinases of interest and their associated peptides),
kinases (list of kinases of interest)

26|Page

- Outputs: counts (vector consisting of peptide count information)
- Parent:

get_ctl_peps:

- Obtains the list of peptides in the control group of a kinase data object
- Type: utility

- Inputs: data (dataframe)

- Outputs: p2 (vector of control group peptides)

get_Ifc:

- Generates the LFC table for a given comparison

Type: other

Inputs: data (dataframe of slope values), groups (groups to compare), peps (peptides of
interest)

Outputs: an LFC table

Parent: export_data

global_annotation:

Extracts the sample names from a dataframe

Type: utility

Inputs: data (dataframe to obtain sample names from)

Outputs: a dataframe with the sample names set to the rownames

global_heatmap:

- Generates a heatmap of the global data

- Type: other

- Inputs: data (dataframe containing slope values), peptides (list of peptides of interest), ...
(optional arguments for heatmaply)

- Outputs: a global heatmap

- Children: global_matrix, global_annotation

- Parent: global_heatmap_maker

global_heatmap_grouped:

- Generates a grouped heatmap of the global data

- Type: other

- Inputs: data (dataframe containing slope values), peptides (list of peptides of interest), ...
(optional arguments for heatmaply)

- Outputs: a grouped global heatmap

- Children: global_matrix_grouped

- Parent: global_heatmap_maker

global_heatmap_maker®:
- Creates all of the global heatmaps and performs a filtering process

27 |Page

Type: wrapper

Inputs: model (model .Rds file), data (data .Rds file), sig_thresh (the signal threshold),
rseq_thresh (the rsquare threshold)

Outputs: heatmaps (a list of heatmaps and a NULL default)

Children: mega_filter_global, global_heatmap, global _heatmap_grouped

global_matrix:

Generates a matrix of slope values for global heatmaps

Type: other

Inputs: data (dataframe of slope values), peptides (list of peptides of interest)
Outputs: a matrix of slope values

Parent: global_heatmap

global_matrix_grouped:

Generates a matrix of slope values for global heatmaps with group assignments
Type: other

Inputs: data (dataframe of slope values), peptides (list of peptides of interest)
Outputs: a matrix of slope values with group assignments

Parent: global_heatmap_grouped

group_annotation:

Extracts the sample names from a dataframe

Type: utility

Inputs: data (dataframe to obtain sample names from)

Outputs: a dataframe with the sample names set to the rownames

group_heatmap:

Generates a heatmap of the global data

Type: other

Inputs: data (dataframe containing slope values), groups (list of groups to compare)
peptides (list of peptides of interest), ... (optional arguments for heatmaply)
Outputs: a heatmap for specific groups

Children: group_matrix, global_annotation

Parent: group_heatmap_maker

group_heatmap_maker:

Creates a heatmap of slope values for specified group

Type: wrapper

Inputs: model (model .Rds file), groups (groups to include), diff _df (data containing the
slope values)

Outputs: heatmaps a group heatmap

Children: group_heatmap

28| Page

group_matrix:

Generates a matrix of slope values for group heatmaps

Type: other

Inputs: data (dataframe of slope values), peptides (list of peptides of interest)
Outputs: a matrix of slope values

Parent: group_heatmap

heat_builder:

Used for the ‘make heatmaps’ generic; builds both global and group heatmaps

Type: complex

Inputs: model (model .Rds file), data (data .Rds file), sig_thresh (signal cutoff threshold),
rseq_thresh (rsqure cutoff threshold), groups (groups to compare for group comparisons),
diff_df (LFC table containing the peptides)

Outputs: heatmaps (list of global, global grouped, and group heatmaps)

Children: mega_filter_global, global_heatmap, global_heatmap_grouped,
group_heatmap_maker

Parent: make_heatmaps (generic)

heatmap_rodeo:

Ul element that creates the buttons used to toggle between heatmaps
Type: structural

Inputs: id (Rshiny ID)

Outputs: N/A

heatmap_rodeo2:

Ul element that creates the buttons used to toggle between heatmaps; unlike the first
heatmap_rodeo function, this one lacks the option for group heatmaps

Type: structural

Inputs: id (Rshiny ID)

Outputs: N/A

Kin_sort:

Finds common kinases between KRSA and UKA; used in conjunction with the kinome
dataframe from Creedenzymatic

Type: utility

Inputs: df (kinome dataframe)

Outputs: kins (list of kinases common to both KRSA and UKA)

kinase_juicer:

Creates both a quartile figure and combined heatmap from KRSA and UKA files; part of
the Creedenzymatic workflow
Type: complex

29| Page

Inputs: krsa_df (KRSA table), uka_df (UKA table)
Outputs: out (list containing a combined Creedenyatic table and a quartile figure)

krsa_compare:

Determines the ratio of mapped to a set of kinases between KRSA and kinopedia
mapping.

Type: complex

Inputs: kinase (kinases of interest), krsa_map (KRSA mapping file), kinopedia_map
(kinopedia mapping file)

Outputs: out

Children: sorter

Ifc_rodeo:

Set of buttons used to toggle between various LFC tables
Type: structural

Inputs: id (Shiny module 1D)

Outputs: N/A

log_transformer:

Applies a log transformation to a two-column matrix of values
Type: utility

Inputs: df (matrix containing two groups)

Outputs: df (log-transformed version of the input dataframe)
Parent: diff_df extend

low_filter_global:

Filters out peptides that do not meet a specific signal value; currently set to remove the
control group before filtering

Type: utility

Inputs: data (dataframe with the slope values), sig_thresh (value to use for the signal
threshold)

Outputs: peps (list of filtered peptides from non-control groups combined with all
peptides from the control group)

Children: get_ctl_peps

Parents: mega_filter_global

low_filter_grouped:

Filters out peptides that do not meet a specific signal value; only applied to specified
groups

Type: utility

Inputs: data (dataframe with the slope values), sig_thresh (value to use for the signal
threshold), groups (groups of interest)

Outputs: p (list of peptides from the specified groups that met the threshold)

30|Page

Parents: mega_filter_grouped

make_cov_plot?:

Generates a coverage plot for a given input

Type: other

Inputs: data (dataframe containing the kinases/peptides as well as their respective ratios)
Outputs: plot (a ggplot object)

Parents: swoosh_plot

mega_filter_global®:

Applies a set of filters to a dataset

Type: wrapper

Inputs: data (data .Rds file), model (scaled model), sig_thresh (signal cutoff value),
rseq_thresh (slope linearity (rsquare) cutoff value)

Outputs: p3 (filtered peptide list)

Children: low_filter_global, nonlinear_filter_global, ref _filter

Parents: heat_builder

nab_kins:

Filters a given map for the list of user-inputted kinases

Type: utility

Inputs: map (mapping file to use), vec (vector of user submitted kinases)
Outputs: map (filtered mapping file)

Children: cruncher

nab_peps:

Filters a given map for the list of user-inputted peptides

Type: utility

Inputs: map (mapping file to use), vec (vector of user submitted peptides)
Outputs: map (filtered mapping file)

Children: cruncher

nab_symbols*®:

Obtains the HGNC symbols for a user submitted list of peptides by first matching them to
their UniProt IDs, then matching the IDs to the symbols

Type: utility

Inputs: ids (map containing 1Ds), hgnc (map containing HGNC symbols), vec (vector of
user submitted peptides)

Outputs: df (dataframe containing the peptides mapped to their corresponding HGNC
symbols)

Children: cruncher

name_eval:

31|Page

- Standardizes the group names for a given kinase run; used in the pre-processing steps
when generating the files for each kinase (model, data, concentrations, etc.)

- Type: utility

- Inputs: data (data loaded using the KRSA _read() function), vec (names to replace
existing group names)

- Outputs: df (dataframe with replaced group names)

nonlinear_filter_global®:

- Filters out peptides that do not meet a given linearity (rsquare value threshold)
- Type: utility

- Inputs: data (linear model), rseq_thresh (rsquare threshold)

- Outputs: p (filtered list of peptides)

- Parents: mega_filter_global

nonlinear_filter_grouped?:

- Filters out peptides for a set of specified groups that do not meet a given linearity
(rsquare value threshold)

- Type: utility

- Inputs: data (linear_model), rseq_thresh (rsquare threshold), groups (groups of interest)

- Outputs: p (filtered list of peptides)

- Parents: mega_filter_grouped

process_major_output®:

- Generates a new output for the ‘major output’ class

- Type: constructor

- Inputs: df_recomb (recombinant dataframe), df _finger (fingerprint dataframe)
- Outputs: out (object of the major_output class)

ref_filter:

- Filters out reference peptides

- Type: utility

- Inputs: peptides (list of peptides produced in the previous two filtration steps)
- Outputs: new_pep (list of peptides with references removed)

- Parents: mega_filter_grouped, mega_filter_global

remove_ctl:

- Removes the control group from a dataframe

- Type: utility

- Inputs: data (dataframe)

- Outputs: df (dataframe without the control group)
- Parents: mega_filter_global

rsquare_slider:

32|Page

Allows the user to adjust the Rsquare threshold
Type: structural

Inputs: id (Shiny module 1D)

Outputs: N/A

shapiro_tester:

Performs the Shaprio-Wilks test for normality on a given matrix

Type: utility

Inputs: df (matrix containing a set of values and the two groups to be compared)
Outputs: out (table with the results including pvalues, means, and standard deviations)

signal_slider:

sorter:

Allows the user to adjust the signal threshold
Type: structural

Inputs: id (Shiny module 1D)

Outputs: N/A

Extracts peptides found only in specific groups

Type: utility

Inputs: total_peps (all peptides of interest), pepsl (all peptides of interest), peps2
(peptides found in second group), groupl (name of first group), group2 (name of second
group), overlap (peptides found in both groups)

Outputs: out (dataframe produced by the tabulator function)

Children: tabulator

Parent: krsa_compare

swoosh_plot?:

Wrapper function to generate the coverage dataframe and then build the plot

Type: wrapper

Inputs: kinases (kinases to find the coverage of), data (dataframe containing both kinases
and peptides)

Outputs: plot (ggplot object)

Children: generate_plot_df, make _cov_plot

tabulator:

Calculates the ratio of peptide distribution from a set of given inputs

Type: utility

Inputs: total_peps (all peptides of interest), df1_only (only peptides found in first group),
df2_only (only peptides found in second group), overlap_peps (peptides found in both
groups), groupl (name of first group), group2 (name of second group)

Outptus: df (dataframe showing the peptide distribution)

Parent: sorter

33|Page

threshold_slider:

- Allows the user to change the LFC threshold
- Type: structural

- Inputs: id (Shiny module 1D)

- Outputs: N/A

zed_transformer:

- Applies a Z score transformation to a two-column matrix of values
- Type: utility

- Inputs: df (matrix containing two groups)

- Outputs: df (Z-transformed version of the input dataframe)

- Parent: diff_df extend

Notes:

1. Should be renamed; Pearson correlation analysis is no longer the only type of correlation
analysis that the program can perform.

2. May be removed in the future; the coverage plot generated by these functions is difficult to
interpret conceptually

3. The ‘rseq’ argument in these functions should be renamed to ‘R2’ or ‘rsquare’ to avoid
confusion with RNA sequencing

4. May be changed in a future update if a method of directly matching peptide names to their
genes can be found; this would remove the intermediary step of first matching to UniProt IDs
and simplify the code.

5. It should be noted that not all IDs have assigned symbols or were removed from the database;
this means that not all submitted peptides may be reflected in the HGNC list.

6. This is fully depreciated; the ‘major_output’ class no longer exists.

5-2 Generics

These functions are part of the S4 object system and can be applied to multiple different object
classes. Oftentimes, a generic will replace a function within the code making it important to
understand what functions they are linked to.

global_heat:

- Associated functions: global _heatmap_maker
- Applicable classes: kinase, fingerprint

group_heat:

3|Page

- Associated functions: group_heatmap_maker
- Applicable classes: kinase, experiment, fingerprint

fuse:
- Associated functions: kinase_juicer
- Applicable classes: experiment
Ifc_table:

- Associated functions: export_data
- Applicable classes: kinase, experiment, fingerprint

make_heatmaps:

- Associated functions: heat_builder
- Applicable classes: kinase, fingerprint

35|Page

