

An illustrated guide to adding data,

managing the database, running analyses,

and more

KINOPEDIA
Official User Manual (v1.0)

Joyce, Alex William

1 | P a g e

This document will explain how to use and maintain the Kinopedia code base. The current code

can be found on the CDRL’s GitHub page.

Contents:

1. General Data Structure

 1-1 Kinopedia Directory 2

 1-2 Major Kinopedia Features 3

 1-3 S4 Class Structure 3

2. Database Structure

 2-1 Kinase Runs 6

 2-2 Kinase Data Objects 7

 2-3 Database Integration 8

 2-4 Adding New Kinase Datasets 9

3. Rshiny Structure

 3-1 Modules 12

 3-2 Primer on Reactivity 13

4. Specific Module Features

 4-1 The Lookup Module 16

 4-2 The Comparison Module 18

 4-3 The EnrichR Module 20

5. Function Guide

 5-1 Normal Functions 23

 5-2 Generics 34

2 | P a g e

1. General Data Structure

Kinopedia contains several functionally different sections that constitute the basis of the program.

These sections are:

• Database; files related to the kinases contained within the program.

• Shiny; components related to the application itself. This includes all of the modules that

facilitate the data analysis.

• Functionality; components related to application functions such as heatmaps, plots, and

statistical analyses.

Understanding how these three components interact with one another is paramount to figuring out

how the program itself works. The database is largely separate from the rest of the program,

existing externally and being called when needed. The functionality is closely linked to the Shiny

components, which can be thought of as a ‘scaffold’ in which the functionality is held.

1-1 Kinopedia directory

The main directory of Kinopedia contains the following folders:

• Classes: script files for S4 class definitions

• Data: setup files needed for Kinopedia to run

• Experiments: experimental data

• Fingerprints: fingerprint data

• Functions: script files for Kinopedia functions

• Kinases: recombinant kinase data

• Modules: scripts related to the modules for the Rshiny component

• Rsconnect: used to connect the program to shinyapps.io

• Runs: contains data related to each ‘run’ (set of chips run on the machine)

There are also several important files located within the main directory:

• .gitignore/.Rhistory: files that can be ignored

• app.R: primary file used to launch the Shiny app

• kinopedia_app.Rproj: Rproject file- used to modify the program in Rstudio

• kinopedia_setup.R: script used by app.R to load all of the essential components from the

data, modules, and function folders.

3 | P a g e

1-2 Major Kinopedia Features

Kinopedia has several different features that can be used to analyze different types of kinase

data. These features include:

- Viewing interactive heatmaps through Plotly

- Browsing the database

- Comparing different datasets

o Generating heatmaps of log fold-change values

o Performing correlation analysis

- Pathway analysis

These features will be described in greater detail in the following sections.

1-3 S4 Class Structure

Kinopedia is based around S4 classes, which can be a bit of a confusing concept to understand. As

these classes encapsulate the majority of the data within the Kinopedia database, it is important to

have a basic understanding of how this system works before modifying the database. Put simply,

S4 classes act as a form of extended list that allows a single object to have multiple components.

For instance, the kinase class contains the model, data, concentration, and general information

regarding a specific kinase; this information can then be accessed by ‘methods’, which will be

described shortly.

4 | P a g e

When new data is added, the build_kinase() function constructs a new kinase object by filling the

necessary slots. Due to differences in data, there are two instances of this function:

build_kinase_conc() and build_kianse_rep(); despite this, they both work the same.

Understanding how this translates into the main code is a bit more complicated. Knowing that

these classes act as lists, it is possible to access these components through the ‘@’ notation. For

example, if a function requires a model as an argument, the notation ‘kinase@model’ can be used.

To further simplify this, we can use generics and methods. In the ‘classes’ folder, there is a script

called ‘generics.R’. Opening it, we can see generics such as:

This generic is for generating the LFC tables used in many of Kinopedia’s functions. Moving back

to the kinase_class.R file, something similar can be seen further down in the script:

This is the corresponding method for the lfc_table() generic. Within this method, we can see a

function called ‘export_data()’ which is the function that actually generates the table. Although

this appears complex on the surface, it is rather simple in practice. The final piece of this puzzle is

to see how this code is implemented in the program itself. The screenshot below shows an instance

of lfc_table() within the recombinant module:

Here, ‘run$userInput’ is a kinase-class object (think ‘ABL2’; the reason for this is due to reactive

programing within Rshiny, which is described later). In essence, lfc_table() is a function that can

5 | P a g e

accept any of the three data types and generate a table of log fold-change values from them. It

does this by recognizing the argument as a kinase-class object, then calls the appropriate method

(method dispatch). The job of the method is to look at the slots contained within the kinase class

then translate these slots to arguments used by the ‘export_data()’ function. This is summarized

in the following chart:

6 | P a g e

2. Database Structure

The database is at the heart of Kinopedia; it contains all of the built-in data related to protein

kinases. In order to facilitate a streamlined experience, the Kinopedia database has a specific

format that must be followed. Roughly, the database can be divided into two sections: the ‘run’

section, which contains all of the instructions necessary to generate new files, and the ‘data’

section, which holds the actual kinase data.

Based on the S4 structure of Kinopedia, each protein kinase (recombinant, experimental, or

fingerprint) can be thought of as an ‘object’. Programmatically, this was described as being akin

to a type of list, however, in terms of physical storage, we can think of each kinase as a folder

(directory) of several files. Over the next two sections, this schema will be described in greater

detail using recombinant data as an example.

2-1 Kinase Runs

The raw data for the kinome array is normally found in the context of a run. A run is a collection

of three or more chips identified by a unique barcode. Because each run can contain multiple

different kinases, it is important that pre-processing steps are put into place to separate each

unique kinase in the run.

Information on each run is contained with the ‘runs’ folder in the main directory.

Within each of these numbered folders is a set of several files:

• Info: .txt file that lists all of the kinases and their associated barcodes

• Setup: R script that provides the code responsible for making the files

• SigmBg/SigSat: KRSA files that contain the actual run data

• Sample Annotation: additional metadata used in the preprocessing workflow.

Most of the Setup.R script file is taken from the KRSA .Rmd template and can be run as-is,

however, there is an important caveat to consider. To streamline the process of loading new data,

7 | P a g e

a standardized naming system was implemented. This involves the use of the ‘name_eval()’

function which replaces the sample names with ‘High, Medium, Low, and CTL’ for concentration

series or ‘Rep1, Rep2, Rep3, and CTL’ for replicates. Because not every set of data contains the

same sample order, it is important to make sure that the ‘vec’ argument in the script file is correct.

Sample order can be identified from the sample_annotation.txt file as shown below:

What the name_eval() function does is it looks at each value of the array column (A1 through A4)

and replaces the sample name that corresponds to that array with the value of the matching number

in ‘vec’. Essentially, if the control sample in the experiment is located at array A1, the first item

in ‘vec’ should be ‘CTL’.

The rest of the setup.R script is straightforward; its main purpose is to generate the model, data,

and conc (concentration) files, which are all the primary components of the kinase data objects

discussed in the next section.

2-2 Kinase Data Objects

Processed kinase data is contained within several different directories depending on the type of

data. In the case of recombinant kinase data, the data is contained within the ‘kinase’ directory.

In this directory, we can see several named folders. Each of these folders contains various files

that comprise the kinase object itself.

In the ABL2 folder, for example, two distinct sets of concentration, data, and model files can be

seen along with a map.csv file. The reason that there are two sets of data for the same kinase is the

8 | P a g e

fact that there were two runs performed on the same kinase set (ABL2, BLK, and HCK) under

different conditions. The first run consisted of variable amounts of protein within each well

(concentration series) while the second run used the same amount of protein (replicate series).

Different runs of the same kinase are distinguished by affixing the last three digits of the barcode

to the kinase’s name and specifying the component, i.e, ‘ABL2_310_model.Rds’.

Examining the ABL2.R file shows how these components are brought together to create the

finalized kinase object. Understanding how the data is assembled within Kinopedia is crucial to

understanding how the shiny and functional components of the app operate as well as to update

and maintain the database.

Here, it can be seen that two separate kinase data objects are being built from the constructors

‘build_kinase_rep()’ and ‘build_kinase_conc()’. These objects are then placed into a list which

can be accessed by the program itself.

2-3 Database Integration

The way that Kinopedia reads the kinase data is rather straightforward. Most of the information

regarding how the data is loaded into Kinopedia is contained within the ‘data’ directory.

Inside this directory are several script (.R) and data (.Rds) files. The script file ‘kinase_data.R’

contains several paths to the scripts from the ‘kinase’ directory.

9 | P a g e

At the bottom of this script are three lists. The first two contain all of the concentration series or

replicate series in separate lists while the third contains all of the data; it should be noted that

kinases in the third list are specified whether or not they are from a concentration or a replicate

series.

More information on how these lists translate into interactive functionality can be found in section

3.

2-4 Adding New Kinase Datasets

To add new recombinant kinase data to Kinopedia, first find the ‘run’ folder within the main

directory (section 2a). To add a new run, simply copy one of the subfolders within the ‘run’

directory and rename it. Once this is complete, rename the ‘run_#_setup.R’ script within the new

folder and delete the signal minus background and signal saturation files, these will need to be

replaced with the new KRSA files from the run you are adding. After adding the new files, the

script is ready to edit.

The first section of each ‘setup.R’ script involves the use of the ‘name_eval()’ function; this

function replaces the sample names with ‘High, Medium, Low, and CTL’ for concentration series

or ‘Rep1, Rep2, Rep3, and CTL’ for replicates. Because not every set of data contains the same

sample order, it is important to make sure that the ‘vec’ argument in the script file is correct. To

check this, right click the sample annotation file that came with the kinase run and open it using

Microsoft Excel.

After this, the rest of the script is relatively straightforward to edit. Following the template, the

barcodes should be changed to match that of the run being added. The purpose of this section is to

generate separate files for each of the kinases on the chip. After this, the names of the files being

created should be changed to that of the kinase in question. Finally, change the values of the

10 | P a g e

concentration vectors located towards the bottom of each section of the script. After doing all of

this, copy the entire script and place it in the R terminal; it should automatically execute and

generate the files.

Adding the data to Kinopedia is largely the same as generating the new files. From the main

directory, located the ‘kinases’ folder and open it. Inside are subfolders named after different

kinases. If the kinase being added is not already present, add a new folder; it if is present, locate

the existing kinase folder. From the ‘run’ folder in the last step, move the model, data, and

concentration files into the new kinase folder. In the terminal, create a new script file and save it

as [kinase_name].R to the kinase folder. Use the example shown in chapter 2b to fill out the script.

If there are multiple sets of data for each kinase, the template should be copied and adjusted as

necessary; all the datasets for each kinase should be located on the same script file.

After the new script has been created, head back to the main directory and locate the data folder.

There are several scripts here, the most important being kinase_data.R. Open this file and add the

path to the new kinase’s script file.

This adds the kinase object to the program, however, there are additional steps that must be taken.

Several parts of Kinopedia rely on ‘master lists’, that are, lists that contain every dataset currently

in the database. There are several of these master lists, and each one must be updated separately.

In the case of recombinant kinases, there is another list that must be updated first; which list is

updated depends on the run being uploaded- if the concentration of protein varies in each well

(high, med, low), then the ‘conc_runs’ list is updated; if the concentration does not vary between

wells, then the ‘rep_runs’ list is updated.

In either case, both types of data are added to the master list, with the type (concentration or

replicate) being specified.

Once the kinase master list has been updated, the kinase is now registered in the database. A

summary of this process is outlined in the following chart:

11 | P a g e

Although this tutorial was written with recombinant datasets in mind, a similar process can be

conducted for both fingerprint and experimental datasets. These datasets require more manual

modifications due to the non-standard naming and grouping conventions.

12 | P a g e

3. Rshiny Structure

The main program of Kinopedia is coded to work within the Rshiny framework. This is done

through a system known as reactive programming which allows variables to be updated in real

time. A detailed guide to Rshiny can be found at https://mastering-shiny.org/, however, this section

will briefly go over how this system is integrated into Kinopedia.

3-1 Modules

Modules are the highest level of organization when it comes to Kinopedia. Modules encapsulate a

majority of the functions such as viewing heatmaps, running correlation analyses, and conducting

pathway analyses. Scripts for each module are contained in the ‘modules’ folder while the script

that loads each module is found in the ‘data’ folder. Each module consists of a UI and a server

component. This is the core of Rshiny, with the UI determining how the app appears and what the

user can interact with and the server determining what outputs are generated. The diagram below

shows how the hierarchy of modules is arranged in Kinopedia.

Each of the primary modules connects to app.R; additionally, several of these modules contains

one or more sub-modules (i.e., the fingerprint module has both ‘fingerprint_overview.R’ and

‘fingerprint_analysis.R’ associated with it). The purpose of this structure is to reduce code

complexity. For instance, the entirety of the fingerprint module is rather condensed:

https://mastering-shiny.org/

13 | P a g e

With the functional portion of the code being sequestered into sub-modules:

When we run the app, we can better understand the practical use of this complex setup. The

primary modules appear from a top feature bar while each of the sub-modules are accessible from

tabs contained within each primary module. This reflects the structure outlined in figure 3.

3-2 Primer on Reactivity

In the process of adding new data, a step where the kinase object is added to one of two lists

(replicate or concentration) was mentioned. The purpose of this is to allow the user to easily

select a kinase from the drop-down menu.

14 | P a g e

Once selected, the kinase’s details such as groups, concentration, and thresholds populate the rest

of the interactive elements on the page. This is where the S4 classes come into play as all of these

details can be packaged into a single object then passed to a list without creating a complex set of

nested lists.

The code segment below is a section of the recombinant module UI. This specific segment is for

the two drop-down menu boxes seen to the right. It should be noted that ‘runs’ refers to the list of

kinases in the database (the replicate or concentration lists) from which the user can select a

specific kinase.

On its own, the UI doesn’t do anything. The server, shown below, is where the bulk of the

functionality comes into play. Although this section of code appears rather complex, it is actually

simple in execution.

15 | P a g e

The first thing that is set up is a reactiveValues object. This object acts as a ‘container’ in which

we can set various values; the execution of this is analogous to a list. Here, we are adding an

element called ‘userInput’ to store the kinase selected by the user. The ‘reactive()’ function creates

a check that monitors any change to the specified input; in this case, the input is ‘run_choice’,

which is the drop-down box containing kinases as seen in the UI. Upon detecting a change,

reactive() crates a temporary reactive variable called runChoice(). At first glance, this may seem

redundant, as it would make more sense to directly place the selected kinase in the container.

Unfortunately, reactive() is difficult to directly tie to reactiveValues. We can mitigate this through

the use of observers that detect changes to reactive objects. When runChoice() is changed, an

observer then places that kinase in the container which crates ‘run$userInput’, which is the kinase

class object itself.

The final part of this code segment extracts the group names from the kinase object and sets those

to the possible choices for the group select box. This pattern is repeated for most of the Kinopedia

modules, therefore, understanding how this system works is paramount to understanding how most

of the Kinopedia code works.

16 | P a g e

4. Specific Module Features

So far, we have explored both the database and the Rshiny components of Kinopedia, however,

there is a third major component of Kinopedia- specific functionality of each module. This

functionality includes figure generation, table generation, and any other components that are not

controlled by Rshiny, S4 classes, or the main database.

4-1. The Lookup Module

The lookup module is used to browse information regarding the kinases in the database, however,

it does not interact with the database itself. The initial view of this module is seen below:

When text is entered into one of the boxes, a table is returned. For instance, entering ‘AKT1’

returns a list of all peptides mapped to AKT1 based on the Kinopedia mapping file.

Previously, when the ‘data’ directory was explored in chapter 2, the .Rds files were ignored,

however, they are integral to the lookup module. These files consist of tables that are read directly

by Kinopedia through the ‘kinopedia_setup.R’ file. A breakdown of these files and the data that

they contain is as follows:

• kinome_data: file from Creedenzymatic, contains KRSA-UKA connections, families, and

HNGC symbols for the entire Kinome.

17 | P a g e

• Kinopedia_PTK_map: assigns peptides to recombinant PTKs based on the Kinopedia

database.

• Kinopedia_STK_map: assigns peptides to recombinant STKs based on the Kinopedia

database

• KRSA_ptk_map: assigns peptides to PTKs based on in-silico assignments; derived from

the KRSA package.

• KRSA_stk_map: assigns peptides to STKs based on in-silico assignments; derived from

the KRSA package.

• ptk_hgnc_map: connects PTK hgnc symbols to their corresponding UniProt IDs.

• ptk_id_map: connects PTK peptide names to their corresponding UniProt IDs.

• stk_hgnc_map: connects STK hgnc symbols to their corresponding UniProt IDs.

• stk_id_map: connects STK peptide names to their corresponding UniProt IDs.

Returning to the Kinopedia mapping files, we can get a better understanding as to why this

component is independent from the database despite being a way to obtain database information.

The reason for this is that the mapping files are manually curated; this means that peptide

assignments are manually determined by the user (see chapter 5 more information on determining

peptide assignments). Due to this, it is important to update the mapping files each time changes

occur in the database. These files can be updated by loading them into the R console through the

read.Rds() function and appending new data to them; once complete, the updated mapping file

can be generated through the save.Rds() function.

Programmatically, the lookup module works off of a series of functions that subset an entry table

(from the .Rds files) based on a set of user-entered words. Each of these subset tables is saved as

a reactive object.

In order to make the module’s UI efficient, a single table output is created. This output is tied to

the container ‘request$table’. When an input is detected in one of the boxes, the corresponding

reactive table is placed into this container.

18 | P a g e

4-2 The Comparison Module

The comparison module is used to directly compare different data sets. Comparisons are done

through the LFC values from specific groups within the datasets. This is as rather complicated

module with several different options.

On the initial view, there are two identical selection fields. The buttons on the top are used to

toggle between different types of data. Clicking on one of the buttons populates the other fields

from which a run and group can be selected.

19 | P a g e

The text entry field towards the bottom is used to input the peptides whose LFC values will be

used for the comparison. The following table can be used to better understand how this process

works:

Essentially, an LFC table is generated for each of the selected datasets. Each of these tables is then

subset using the list of user-entered peptides. Peptides from this subset that are found in both

datasets are then used to construct a matrix from which further analyses can be conducted.

In order to better understand how this process works, we can explore the code. At the start of the

code, we can see a sub-module distributed across both the UI and Server.

The selection submodule is responsible for generating both of the LFC tables. This module works

similarly to the other modules (recombinant, fingerprint, and experimental viewers). Of note is the

presence of ‘list’ arguments in the function definition of the server:

20 | P a g e

These list arguments are the previously discussed ‘master lists’ that contain all of the data within

the database. It should be noted that arguments utilized by sub-modules are also defined within the

signature of the main function. These arguments are set in the ‘app.R’ file where the app as a whole

is constructed:

The remainder of the module consists of standard table/plot inputs and outputs. Descriptions of

each of the functions within the rest of this module can be found in chapter 5.

4-3 The EnrichR Module

The EnrichR module is used to conduct pathway analysis; the actual pathway analysis is done

through an R package written by Wajid Jawaid; documentation for this package can be found here:

https://cran.r-project.org/web/packages/enrichR/vignettes/enrichR.html

The enrichR r package contains several databases that can be queried; currently, Kinopedia is set

up to utilize eight unique databases. Additional databases can be added to Kinopedia by finding

the ‘dbs’ object in the file ‘kinopedia_setup.R’.

Functionally, the enrichR module operates in the same manner as the lookup module. The main

page contains tabs for different categories of data, a dropdown menu for selecting a database, and

several options to view a table, a plot, and downloading the table.

https://cran.r-project.org/web/packages/enrichR/vignettes/enrichR.html

21 | P a g e

The actual code itself is relatively straightforward. Each of the three tabs is controlled by its own

separate sub-module that loads each of the required arguments from the setup file.

Looking at the ‘pep_enrich.R’ file, it can be seen that the sub-modules are a bit more complex,

however, it can be easily broken down. Most of the UI consists entirely of components related to

displaying the enrichR results with a text-input and database selector field.

Although the server appears to be complicated on the surface, a majority of it follows previously

established patterns of reactivity. Enrichr itself only accepts HNGC symbols; the portion of the

code that assigns these symbols to peptides works exactly the same as it does for the lookup

module. The key difference is the inclusion of the enrichrR portion; most of this is controlled by

the enrichr function itself which comes from the enrichr package. The ‘plotEnrich() function

converts the initial table results to a plot; both the table and plot forms of the results are stored in

the ‘results’ container.

22 | P a g e

Something to note is the inclusion of a download function; this function is to download the table

to a .csv file, however, there are multiple issues with this function that need to be resolved in the

future. First, the filetype must be specified by manually adding ‘.csv’ to the filename. Second, the

file will only download when the table is being displayed; the reason for this is that the download

handler is drawing from the ‘data’ container. If the plot is being displayed then the container is

filled with the plot which cannot be downloaded.

23 | P a g e

5. Function Guide

The remainder of this handbook will be dedicated to explaining the many functions that can be

found within the functions directory of the app; the main purpose of including this section is to

provide better clarity for future package development. In this section, there are a few function

types:

• Structural: used for rendering Rshiny UI elements

• Wrapper: used to several different functions into a single function; normally outputs a list

object of several outputs

• Constructor: builds a new S4 object of a defined class

• Utility: automates a simple task such as counting items in a list

• Complex: functions that either perform complicated operations or contain many different

components

• Other: functions that do not fit the other four categories

• Generic: functions that serve as generics for S4 classes

5-1 Normal Functions

blend:

- Generates a combined table of two independent LFC tables, a peptide distribution report,

and a heatmap of LFC values.

- Type: complex

- Inputs: df1 (first LFC table), df2 (second LFC table), group1 (name of first group),

group2 (name of second group), peps (list of peptides of interest)

- Outputs: out (list object containing the combined dataframe, the distribution dataframe,

and a heatmap)

- Children: blender_heatmap, blender_matrix

blender_heatmap:

- Creates a heatmap using a matrix of LFC values

- Type: other

- Inputs: data (matrix object), … (additional arguments compatible with R heatmaps)

- Outputs: heatmap

- Parent: blend

blender_matrix:

- Creates a matrix of LFC values

- Type: other

- Inputs: data (combined dataframe of the two LFC tables of interest), peptides (list of

peptides of interest)

- Outputs: a matrix of LFC values

24 | P a g e

- Parent: blend

build_kinase_conc:

- Creates a new kinase object for a concentration series

- Type: constructor

- Inputs: data (data.Rds file), model (model.Rds file), concs (concs.Rds file)

- Outputs: a kinase object

build_kinase_rep:

- Creates a new kinase object for a replicate series

- Type: constructor

- Inputs: data (data.Rds file), model (model.Rds file), concs (concs.Rds file)

- Outputs: a kinase object

cor_pearson1:

- Runs a correlation analysis between two LFC dataframes

- Type: other

- Inputs: y1 (first group), y2 (second group), ylab1 (name of first group), ylab2 (name of

second group), method (type of test to use)

- Outputs: a list containing two quality reports and a complex results object used in further

functions

- Parent:

cor_plot_maker:

- Generates a correlation scatterplot and two quality report scatterplots

- Type: wrapper

- Inputs: df (combined LFC dataframe), method (type of test to use)

- Outputs: a list containing the scatterplot and two quality plots in the form of ggplot

objects

- Children: cor_scatter

cor_plot_rodeo:

- Set of radio buttons used to toggle between plot displays, specifically, those produced by

cor_plot_maker

- Type: structural

- Inputs: id (id used in Rshiny)

- Outputs: N/A

cor_scatter:

- Generates a scatterplot of a correlation between two LFC dataframes

- Type: other

25 | P a g e

- Inputs: df (combined dataframe), x (data column for the x-axis), y (data column for the y-

axis), xlab (label of the x-axis), ylab (label for the y-axis), method (type of correlation

test)

- Outputs: plot (ggplot object)

- Parent: cor_plot_maker

cov_preprocess2:

- Counts the number of kinases that map to a set of given peptides

- Type: complex

- Inputs: map (mapping table to use), peps (list of peptides of interest)

- Outputs: perc_df (dataframe of the counts)

- Parent:

- Children: get_counts, generate_perc_df

cruncher:

- Splits a single string into a vector of multiple strings based on spaces (“ “)

- Type: utility

- Inputs: string (single string)

- Outputs: string (vector of strings)

- Parents: family_check,

diff_df_extend:

- Produces a set of data transformed tables from a given table

- Type: wrapper

- Inputs: df (a dataframe of LFC values)

- Outputs: out (a list containing the original dataframe, a z-normalized version, and a log

transformed version)

- Children: zed_transformer, log_transformer

export_data3:

- Filters data and creates a table of LFC values

- Type: complex

- Inputs: groups (groups to compare), data (data object derived from data.Rds), model

(linear model derived from model.Rds), sig_thresh (signal cutoff), rseq_thresh (r-square

cutoff)

- Outputs: diff_df_fil (filtered LFC table)

- Children: mega_filter_grouped, get_LFC

family_check:

- Looks for what type of family a particular kinase comes from

- Type: utility

- Inputs: kinome (kinome file from Creedenzymatic, vec (user-derived list of kinases)

- Outputs: df (report of kinase families)

26 | P a g e

- Children: cruncher

generate_perc_df2:

- Generates a table of percent coverage for a set of kinases

- Type: other

- Inputs: kinases (list of kinases of interest), counts_sub (number of peptides of interest

mapped to those kinases), counts_all (number of all peptides mapped to those kinases)

- Outputs: df (percent coverage report)

- Parent: cov_preprocess

generate_plot_df2:

- Generates the dataframe used to construct the coverage plot

- Type: other

- Inputs: kinases (list of kinases of interest), data (table containing the percent coverage

report)

- Outputs: data (table that contains information relating to subset counts and total counts;

used to construct a stacked barplot)

- Children: generate_sub_df, generate_total_df

- Parents: swoosh_plot

generate_sub_df2:

- Generates the top part of the plot dataframe for the coverage section containing the

peptides of interest

- Type: other

- Inputs: kinases (list of kinases of interest), percent (percent of the subset covered), ratio

(ratio of the subset to the total)

- Outputs: df2 (subset coverage dataframe)

- Parent: generate_plot_df

generate_total_df2:

- Generates the bottom part of the plot dataframe for the coverage section containing the

total number of peptides each kinase is mapped to

- Type: other

- Inputs: kinases (list of kinases of interest), percent (percent of the total not covered by the

subset)

- Outputs: df (total coverage dataframe)

- Parent: generate_plot_df

get_counts:

- Counts the number of peptides mapped to each kinase in a list of kinases

- Type: utility

- Inputs: df (dataframe containing the kinases of interest and their associated peptides),

kinases (list of kinases of interest)

27 | P a g e

- Outputs: counts (vector consisting of peptide count information)

- Parent:

get_ctl_peps:

- Obtains the list of peptides in the control group of a kinase data object

- Type: utility

- Inputs: data (dataframe)

- Outputs: p2 (vector of control group peptides)

get_lfc:

- Generates the LFC table for a given comparison

- Type: other

- Inputs: data (dataframe of slope values), groups (groups to compare), peps (peptides of

interest)

- Outputs: an LFC table

- Parent: export_data

global_annotation:

- Extracts the sample names from a dataframe

- Type: utility

- Inputs: data (dataframe to obtain sample names from)

- Outputs: a dataframe with the sample names set to the rownames

global_heatmap:

- Generates a heatmap of the global data

- Type: other

- Inputs: data (dataframe containing slope values), peptides (list of peptides of interest), …

(optional arguments for heatmaply)

- Outputs: a global heatmap

- Children: global_matrix, global_annotation

- Parent: global_heatmap_maker

global_heatmap_grouped:

- Generates a grouped heatmap of the global data

- Type: other

- Inputs: data (dataframe containing slope values), peptides (list of peptides of interest), …

(optional arguments for heatmaply)

- Outputs: a grouped global heatmap

- Children: global_matrix_grouped

- Parent: global_heatmap_maker

global_heatmap_maker3:

- Creates all of the global heatmaps and performs a filtering process

28 | P a g e

- Type: wrapper

- Inputs: model (model .Rds file), data (data .Rds file), sig_thresh (the signal threshold),

rseq_thresh (the rsquare threshold)

- Outputs: heatmaps (a list of heatmaps and a NULL default)

- Children: mega_filter_global, global_heatmap, global_heatmap_grouped

global_matrix:

- Generates a matrix of slope values for global heatmaps

- Type: other

- Inputs: data (dataframe of slope values), peptides (list of peptides of interest)

- Outputs: a matrix of slope values

- Parent: global_heatmap

global_matrix_grouped:

- Generates a matrix of slope values for global heatmaps with group assignments

- Type: other

- Inputs: data (dataframe of slope values), peptides (list of peptides of interest)

- Outputs: a matrix of slope values with group assignments

- Parent: global_heatmap_grouped

group_annotation:

- Extracts the sample names from a dataframe

- Type: utility

- Inputs: data (dataframe to obtain sample names from)

- Outputs: a dataframe with the sample names set to the rownames

group_heatmap:

- Generates a heatmap of the global data

- Type: other

- Inputs: data (dataframe containing slope values), groups (list of groups to compare)

peptides (list of peptides of interest), … (optional arguments for heatmaply)

- Outputs: a heatmap for specific groups

- Children: group_matrix, global_annotation

- Parent: group_heatmap_maker

group_heatmap_maker:

- Creates a heatmap of slope values for specified group

- Type: wrapper

- Inputs: model (model .Rds file), groups (groups to include), diff_df (data containing the

slope values)

- Outputs: heatmaps a group heatmap

- Children: group_heatmap

29 | P a g e

group_matrix:

- Generates a matrix of slope values for group heatmaps

- Type: other

- Inputs: data (dataframe of slope values), peptides (list of peptides of interest)

- Outputs: a matrix of slope values

- Parent: group_heatmap

heat_builder3:

- Used for the ‘make_heatmaps’ generic; builds both global and group heatmaps

- Type: complex

- Inputs: model (model .Rds file), data (data .Rds file), sig_thresh (signal cutoff threshold),

rseq_thresh (rsqure cutoff threshold), groups (groups to compare for group comparisons),

diff_df (LFC table containing the peptides)

- Outputs: heatmaps (list of global, global grouped, and group heatmaps)

- Children: mega_filter_global, global_heatmap, global_heatmap_grouped,

group_heatmap_maker

- Parent: make_heatmaps (generic)

heatmap_rodeo:

- UI element that creates the buttons used to toggle between heatmaps

- Type: structural

- Inputs: id (Rshiny ID)

- Outputs: N/A

heatmap_rodeo2:

- UI element that creates the buttons used to toggle between heatmaps; unlike the first

heatmap_rodeo function, this one lacks the option for group heatmaps

- Type: structural

- Inputs: id (Rshiny ID)

- Outputs: N/A

kin_sort:

- Finds common kinases between KRSA and UKA; used in conjunction with the kinome

dataframe from Creedenzymatic

- Type: utility

- Inputs: df (kinome dataframe)

- Outputs: kins (list of kinases common to both KRSA and UKA)

kinase_juicer:

- Creates both a quartile figure and combined heatmap from KRSA and UKA files; part of

the Creedenzymatic workflow

- Type: complex

30 | P a g e

- Inputs: krsa_df (KRSA table), uka_df (UKA table)

- Outputs: out (list containing a combined Creedenyatic table and a quartile figure)

krsa_compare:

- Determines the ratio of mapped to a set of kinases between KRSA and kinopedia

mapping.

- Type: complex

- Inputs: kinase (kinases of interest), krsa_map (KRSA mapping file), kinopedia_map

(kinopedia mapping file)

- Outputs: out

- Children: sorter

lfc_rodeo:

- Set of buttons used to toggle between various LFC tables

- Type: structural

- Inputs: id (Shiny module ID)

- Outputs: N/A

log_transformer:

- Applies a log transformation to a two-column matrix of values

- Type: utility

- Inputs: df (matrix containing two groups)

- Outputs: df (log-transformed version of the input dataframe)

- Parent: diff_df_extend

low_filter_global:

- Filters out peptides that do not meet a specific signal value; currently set to remove the

control group before filtering

- Type: utility

- Inputs: data (dataframe with the slope values), sig_thresh (value to use for the signal

threshold)

- Outputs: peps (list of filtered peptides from non-control groups combined with all

peptides from the control group)

- Children: get_ctl_peps

- Parents: mega_filter_global

low_filter_grouped:

- Filters out peptides that do not meet a specific signal value; only applied to specified

groups

- Type: utility

- Inputs: data (dataframe with the slope values), sig_thresh (value to use for the signal

threshold), groups (groups of interest)

- Outputs: p (list of peptides from the specified groups that met the threshold)

31 | P a g e

- Parents: mega_filter_grouped

make_cov_plot2:

- Generates a coverage plot for a given input

- Type: other

- Inputs: data (dataframe containing the kinases/peptides as well as their respective ratios)

- Outputs: plot (a ggplot object)

- Parents: swoosh_plot

mega_filter_global3:

- Applies a set of filters to a dataset

- Type: wrapper

- Inputs: data (data .Rds file), model (scaled model), sig_thresh (signal cutoff value),

rseq_thresh (slope linearity (rsquare) cutoff value)

- Outputs: p3 (filtered peptide list)

- Children: low_filter_global, nonlinear_filter_global, ref_filter

- Parents: heat_builder

nab_kins:

- Filters a given map for the list of user-inputted kinases

- Type: utility

- Inputs: map (mapping file to use), vec (vector of user submitted kinases)

- Outputs: map (filtered mapping file)

- Children: cruncher

nab_peps:

- Filters a given map for the list of user-inputted peptides

- Type: utility

- Inputs: map (mapping file to use), vec (vector of user submitted peptides)

- Outputs: map (filtered mapping file)

- Children: cruncher

nab_symbols4,5:

- Obtains the HGNC symbols for a user submitted list of peptides by first matching them to

their UniProt IDs, then matching the IDs to the symbols

- Type: utility

- Inputs: ids (map containing IDs), hgnc (map containing HGNC symbols), vec (vector of

user submitted peptides)

- Outputs: df (dataframe containing the peptides mapped to their corresponding HGNC

symbols)

- Children: cruncher

name_eval:

32 | P a g e

- Standardizes the group names for a given kinase run; used in the pre-processing steps

when generating the files for each kinase (model, data, concentrations, etc.)

- Type: utility

- Inputs: data (data loaded using the KRSA_read() function), vec (names to replace

existing group names)

- Outputs: df (dataframe with replaced group names)

nonlinear_filter_global3:

- Filters out peptides that do not meet a given linearity (rsquare value threshold)

- Type: utility

- Inputs: data (linear model), rseq_thresh (rsquare threshold)

- Outputs: p (filtered list of peptides)

- Parents: mega_filter_global

nonlinear_filter_grouped3:

- Filters out peptides for a set of specified groups that do not meet a given linearity

(rsquare value threshold)

- Type: utility

- Inputs: data (linear_model), rseq_thresh (rsquare threshold), groups (groups of interest)

- Outputs: p (filtered list of peptides)

- Parents: mega_filter_grouped

process_major_output6:

- Generates a new output for the ‘major_output’ class

- Type: constructor

- Inputs: df_recomb (recombinant dataframe), df_finger (fingerprint dataframe)

- Outputs: out (object of the major_output class)

ref_filter:

- Filters out reference peptides

- Type: utility

- Inputs: peptides (list of peptides produced in the previous two filtration steps)

- Outputs: new_pep (list of peptides with references removed)

- Parents: mega_filter_grouped, mega_filter_global

remove_ctl:

- Removes the control group from a dataframe

- Type: utility

- Inputs: data (dataframe)

- Outputs: df (dataframe without the control group)

- Parents: mega_filter_global

rsquare_slider:

33 | P a g e

- Allows the user to adjust the Rsquare threshold

- Type: structural

- Inputs: id (Shiny module ID)

- Outputs: N/A

shapiro_tester:

- Performs the Shaprio-Wilks test for normality on a given matrix

- Type: utility

- Inputs: df (matrix containing a set of values and the two groups to be compared)

- Outputs: out (table with the results including pvalues, means, and standard deviations)

signal_slider:

- Allows the user to adjust the signal threshold

- Type: structural

- Inputs: id (Shiny module ID)

- Outputs: N/A

sorter:

- Extracts peptides found only in specific groups

- Type: utility

- Inputs: total_peps (all peptides of interest), peps1 (all peptides of interest), peps2

(peptides found in second group), group1 (name of first group), group2 (name of second

group), overlap (peptides found in both groups)

- Outputs: out (dataframe produced by the tabulator function)

- Children: tabulator

- Parent: krsa_compare

swoosh_plot2:

- Wrapper function to generate the coverage dataframe and then build the plot

- Type: wrapper

- Inputs: kinases (kinases to find the coverage of), data (dataframe containing both kinases

and peptides)

- Outputs: plot (ggplot object)

- Children: generate_plot_df, make_cov_plot

tabulator:

- Calculates the ratio of peptide distribution from a set of given inputs

- Type: utility

- Inputs: total_peps (all peptides of interest), df1_only (only peptides found in first group),

df2_only (only peptides found in second group), overlap_peps (peptides found in both

groups), group1 (name of first group), group2 (name of second group)

- Outptus: df (dataframe showing the peptide distribution)

- Parent: sorter

34 | P a g e

threshold_slider:

- Allows the user to change the LFC threshold

- Type: structural

- Inputs: id (Shiny module ID)

- Outputs: N/A

zed_transformer:

- Applies a Z score transformation to a two-column matrix of values

- Type: utility

- Inputs: df (matrix containing two groups)

- Outputs: df (Z-transformed version of the input dataframe)

- Parent: diff_df_extend

Notes:

1. Should be renamed; Pearson correlation analysis is no longer the only type of correlation

analysis that the program can perform.

2. May be removed in the future; the coverage plot generated by these functions is difficult to

interpret conceptually

3. The ‘rseq’ argument in these functions should be renamed to ‘R2’ or ‘rsquare’ to avoid

confusion with RNA sequencing

4. May be changed in a future update if a method of directly matching peptide names to their

genes can be found; this would remove the intermediary step of first matching to UniProt IDs

and simplify the code.

5. It should be noted that not all IDs have assigned symbols or were removed from the database;

this means that not all submitted peptides may be reflected in the HGNC list.

6. This is fully depreciated; the ‘major_output’ class no longer exists.

5-2 Generics

These functions are part of the S4 object system and can be applied to multiple different object

classes. Oftentimes, a generic will replace a function within the code making it important to

understand what functions they are linked to.

global_heat:

- Associated functions: global_heatmap_maker

- Applicable classes: kinase, fingerprint

group_heat:

35 | P a g e

- Associated functions: group_heatmap_maker

- Applicable classes: kinase, experiment, fingerprint

fuse:

- Associated functions: kinase_juicer

- Applicable classes: experiment

lfc_table:

- Associated functions: export_data

- Applicable classes: kinase, experiment, fingerprint

make_heatmaps:

- Associated functions: heat_builder

- Applicable classes: kinase, fingerprint

