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• Disorders of the central nervous system (CNS Disorders) such as Alzheimer’s Disease and schizophrenia 

(SCZ) often have multiple different causes, however, research suggests common mechanisms between the 

two [1,2] along with the involvement of protein kinases [3,4].

• Most work focuses on measures of gene expression, including mRNA, protein, or phosphoprotein levels in a 

biological sample. We sought to investigate a more functional measures of gene expression, protein kinase 

activity. Recent technologies allow for real-time analysis of protein kinase activity, giving further insight into 

how kinases regulate the underlying pathways behind these complex disorders. 

• Our approach permits simultaneous assessment of 100’s of protein kinases, yielding datasets that inform 

the “Active Kinome” in our postmortem samples.

• Bioinformatic analyses of active kinome data may provide important clues regarding the similarities and 

differences between Alzheimer’s Disease and schizophrenia .

Background



Materials and Methods

• Samples from the dorsolateral prefrontal cortex (DLPFC) of postmortem brains were
analyzed using the PamStation12.

• AD samples were run at the university of Toledo and included mild cognitive
impairment (MCI) in addition to AD.

• SCZ samples were run at the University of Alabama Birmingham

Figure will  
be added

• Image analysis was done using BioNavigator by PamGene. Following this, two separate 
deconvolution methods were used:

• UKA (upstream kinase analysis, PamGene): predicted exact kinases.
• KRSA (kinome random sequence analyzer, K. Alganem): predicted kinase families 

through random sampling.

• Next, the R. Package Creedenzymatic (J. Creeden) aggregated the results of the two 
deconvolution analyses together. Kinases were assigned a ranked, ordered, composite 
score based on their original UKA/KRSA scores and organized in quartiles. Kinases that 
appeared in both KRSA and UKA from the first quartile of the data pool were considered 
to be significant hits and were selected for further study. 

• Data enrichment was done through the EnrichR [1] web server. For pathway analysis, 
the BioPlanet 2019 database was used while the Human Gene Atlas was used for 
expression level analysis.



Kinase Analysis Results

Figure 1:
Plot showing the kinase hits in each of the eight groups 
following deconvolution and data aggregation. Grey 
boxes represent the kinase is included in that group 
while white boxes show that it is not.
Hits were determined based on quartile-rank plots 
using Creedenzymatic scores which combined the 
results of both KRSA and UKA. A kinase had to be 
present in both deconvolution methods to be 
considered a hit. The table below is an example using 
the female AD group that shows the top 5 UKA results 
and the top 5 KRSA results ranked according to their 
Creedenzymatic score.



2a. Female AD 2b. Male AD

2c. Female MCI 2d. Male MCI

2e. Female AD/MCI

2g. Female SCZ

2f. Male AD/MCI

2h. Male SCZ

Figure 2:
Top 10 Enrichr
results for each of 
the eight groups. 
Within each 
group, the left 
graph 
corresponds to 
the BioPlanet
2019 pathways 
while the right 
graph 
corresponds to 
the Human Gene 
Atlas expression 
locations. All bars 
are sorted by 
lowest p-values.



Figure 3: Plot showing the pathway results. 
Blue boxes represent significant pathways in each 
group based on their p-values from figure 2. White
boxes indicate that a particular pathway was 
not significant in that group.

Pathway Analysis Results



Figure 4: Plot showing the expression level 
results. Red boxes represent significant 
cell/tissue types in each group based on their
P-values as indicated in figure 2. White boxes
Indicate that a cell/tissue type was not 
significant in that group.

Expression Analysis Results



Discussion/Conclusion
Kinase Analysis (figure 1)
• Figure 1 indicates that gender differences between groups has a large impact; female SCZ appears to contain the largest differences in 

kinase content compared to others as it contains a large amount of unique kinases, denoted by ‘F’ in the lists below. Kinases only found in 
male groups are denoted by ‘M’. Kinases found in both male and female groups are denoted by ‘F/M’.

• Kinases exclusive to AD and MCI include: CHEK1(F), CSNK1E(M), MTOR(F), and PIM3(F/M).
• Kinases exclusive to SCZ include: CDK5(F), CDK6(F),  CDK9(F), DYRK1(F), MAPK12(F/M), MAPK15(F/M), NPR1(F), NUAK1(F), TINK1(F), and 

CAMKK1(F).
• Kinases found in all groups include: AKT1, AKT2, PRKX, PRKY, and MAPK7.
• Interestingly, female SCZ does not contain any members of the RPS6K family while male SCZ does not contain any members of the CDK 

family; this may be something that could be investigated further.

Pathway Analysis (figure 2 and figure 3)
• Insulin/EGFR/Fibroblast signaling was dysregulated in all samples while neurotrophin signaling was dysregulated in all except for female 

MCI, SCZ, and AD. 
• Fibroblasts derived from neurons show AD-like pathologies, allowing them to be used as potential biomarkers for AD [5,6,7].  Additionally, 

insulin signaling dysregulation along with diabetes has been shown to be a risk factor for both AD and SCZ [8,9].
• IGF-G signaling appears to be dysregulated in both male and female SCZ along with late-stage female AD (AD/MCI); overall, the pathways 

between SCZ and AD appear to be similar when accounting for gender differences.

Expression Level Analysis (figure 2 and figure 4)
• The Prefrontal cortex was enriched in all groups; additionally,  many of other hits from the Human Gene Atlas were immune cells such as 

CD4+/CD8+ T cells, NK cells, and lymphocytes. These results are consistent with both the location of the samples (DLPFC) and the fact that 
inflammation is associated with both AD and SCZ [10,11] .
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